Author:
Ladugin Maxim A.,Yarotskaya Irina V.,Bagaev Timur A.,Telegin Konstantin Yu.,Andreev Andrey Yu.,Zasavitskii Ivan I.,Padalitsa Anatoliy A.,Marmalyuk Alexander A.
Abstract
AlGaAs/GaAs heterostructures are the base of many semiconductor devices. The fabrication of new types of devices demands heterostructures with special features, such as large total thickness (~20 μm), ultrathin layers (~1 nm), high repeatability (up to 1000 periods) and uniformity, for which a conventional approach of growing such heterostructures is insufficient and the development of new growth procedures is needed. This article summarizes our work on the metalorganic vapour-phase epitaxy (MOVPE) growth of AlGaAs/GaAs heterostructures for modern infrared devices. The growth approaches presented allow for the improved output characteristics of different emitting devices such as multi active region lasers, epitaxially integrated via highly doped tunnel junctions (emission wavelength λ ~ 1 μm), quantum cascade lasers (λ ~10 μm) and THz laser (λ ~100 μm), based on short-period superlattice with 500–2000 layers.
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献