Abstract
Van der Waals heterojunctions based on transition metal dichalcogenides (TMDs) show promising potential in optoelectronic devices, due to the ultrafast separation of photoexcited carriers and efficient generation of the photocurrent. Herein, this study demonstrated a high-responsivity photovoltaic photodetector based on a MoTe2/MoSe2 type-II heterojunction. Due to the interlayer built-in potential, the MoTe2/MoSe2 heterojunction shows obvious photovoltaic behavior and its photoresponse can be tuned by the gate voltage due to the ultrathin thickness of the heterojunction. This self-powered photovoltaic photodetector exhibits an excellent responsivity of 1.5 A W−1, larger than previously reported TMDs-based photovoltaic photodetectors. Due to the high-efficiency separation of electron-hole pairs and ultrafast charge transfer, the light-induced on/off ratio of current switching is larger than 104 at zero bias, and the dark current is extremely low (~10−13 A). These MoTe2/MoSe2 type-II heterojunctions are expected to provide more opportunities for future nanoscale optoelectronic devices.
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献