Abstract
Photocatalysis has been vastly applied for the removal of contaminants of emerging concern (CECs) and other micropollutants, with the aim of future water reclamation. As a process based upon photon irradiation, materials that may be activated through natural light sources are highly pursued, to facilitate their application and reduce costs. TiO2 is a reference material, and it has been greatly optimized. However, in its typical configuration, it is known to be mainly active under ultraviolet radiation. Thus, multiple alternative visible light driven (VLD) materials have been intensively studied recently. WO3 and g-C3N4 are currently attractive VLD catalysts, with WO3 possessing similarities with TiO2 as a metal oxide, allowing correlations between the knowledge regarding the reference catalyst, and g-C3N4 having an interesting and distinct non-metallic polymeric structure with the benefit of easy production. In this review, recent developments towards CECs degradation in TiO2 based photocatalysis are discussed, as reference catalyst, alongside the selected alternative materials, WO3 and g-C3N4. The aim here is to evaluate the different techniques more commonly explored to enhance catalyst photo-activity, specifically doping with multiple elements and the formation of composite materials. Moreover, the possible combination of photocatalysis and ozonation is also explored, as a promising route to potentialize their individual efficiencies and overcome typical drawbacks.
Funder
Fundação para a Ciência e Tecnologia
European Structural and Investment Funds
Subject
Physical and Theoretical Chemistry,Catalysis,General Environmental Science
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献