Author:
Boonprakob Natkritta,Channei Duangdao,Zhao Chen
Abstract
AbstractThe enhancement of the photocatalytic performance of pristine WO3 was systematically adjusted due to its fast recombination rate and low reduction potential. A designed heterostructure photocatalyst was necessarily synthesised by Fe3+ metal ions doping into WO3 structure with and composition modification. In this study, we synthesised a retrievable Fe-doped WO3/SiO2 heterostructure using a surfactant-assisted hydrothermal method. This heterostructure was then employed as an effective photocatalyst for the removal of Cr(VI) under visible light irradiation. Enlarged photocatalytic reduction was observed over a synergetic 7.5 mol% Fe-doped WO3/SiO2-20 nanocomposite, resulting in dramatically increased activity compared with undoped WO3 and SiO2 nanomaterials under visible light illumination within 90 min. The presence of 7.5 mol% Fe3+ ion dopant in WO3 optimised electron–hole recombination, consequently reducing WO3 photocorrosion. After adding SiO2 nanoparticles, the binary WO3-SiO2 nanocomposite played roles as both adsorbent and photocatalyst to increase specific surface area. Thus, the 7.5 mol% Fe-doped WO3/SiO2-20 nanocomposite catalyst had more active sites on the surface of catalyst, and enhanced photocatalytic reduction was significantly achieved. The results showed 91.1% photocatalytic reduction over the optimum photocatalyst, with a photoreduction kinetic rate of 21.1 × 10–3 min−1, which was approximately four times faster than pristine WO3. Therefore, the superior optimal photocatalyst demonstrated reusability, with activities decreasing by only 9.8% after five cycles. The high photocatalytic performance and excellent stability of our photocatalyst indicate great potential for water pollution treatments.
Funder
Thailand Science Research and Innovation
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献