Abstract
In this work, Ag2CO3 was prepared via a solution-based method and was further characterized by XRD, Raman spectroscopy, SEM/EDS analysis, and UV-VIS spectroscopy. SEM results revealed the formation of micro-sized particles with a rectangular shape. The photocatalytic activity of the catalyst was evaluated in the degradation of 4-tert-butylphenol (4-t-BP) under simulated solar light irradiation. The effects of 4-t-BP initial concentration (2.5–10 ppm), catalyst dosage (100–300 mg/L), different types of lamp sources, and water matrix were investigated. Complete 4-t-BP (5 ppm) degradation was achieved after 60 min by Ag2CO3 (200 mg/L). The effect of anions such as CO32−, HCO3−, NO3−, and Cl- in the concentration range of 100–300 mg/L was also studied. CO32− promoted the photocatalytic degradation process, while HCO3− and NO3− exhibited an inhibition effect, which was marked with increasing HCO3− and NO3− concentrations. The presence of Cl− at the concentration of 100 mg/L increased 4-t-BP degradation, but higher concentrations inhibited the photocatalytic reaction. Cyclic experiments showed that the catalyst practically retained its catalytic activity toward 4-t-BP degradation after three successive experimental runs.
Subject
Physical and Theoretical Chemistry,Catalysis,General Environmental Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献