Efficient Removal of Ammonia Nitrogen by an Electrochemical Process for Spent Caustic Wastewater Treatment

Author:

Zuo Sijin,Zhang Yinqiao,Guo Ruixin,Chen Jianqiu

Abstract

Spent caustic wastewater produced in a soda plant has a high concentration of ammonia nitrogen (NH4+-N). As excessive NH4+-N discharging into water bodies would cause eutrophication as well as destruction to the ecology balance, developing an efficient technology for NH4+-N removal from the spent caustic wastewater is imperative in the current society. In this study, an electrochemical process with graphene electrodes was designed for the NH4+-N removal in the spent caustic wastewater. The removal efficiency of the NH4+-N during the electrochemical process could reach 98.7% at 4 A in a short treatment time (within 120 s) with an acceptable energy consumption (6.1 kWh/m3-order). NO3− and NO2− were not detected during the electrochemical process. An insignificant amount of NH2Cl, NHCl2, and NCl3 produced in the treatment suggested that little of the NH4+-N reacted with chlorine, that is, chlorination played a negligible role in the NH4+-N removal. By electron equilibrium and nitrogen conversion analysis, we think that NH4+-N was primarily converted to NH2(ads) on the surface of a graphene electrode by one-electron transfer during the direct oxidation of the electrochemical process. Due to the high calcium ion (Ca2+) in the spent caustic wastewater, the electrode scale significantly increased to 1.4 g after treatment of 240 s at 4 A. By X-ray diffraction (XRD) analysis, the composition of the electrode scale is portlandite Ca(OH)2. Although the electrode scale was obvious during the electrochemical treatment, it could be alleviated by alternating the electrode polarity. As a result, the life and efficiency of the graphene electrode for NH4+-N removal could remain stable for a long time. These results suggest that the electrochemical process with a graphene electrode may provide a competitive technology for NH4+-N removal in spent caustic wastewater treatment.

Funder

High-level Talent Introduction Project of China Pharmaceutical University

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3