Understanding the conversion of nitrogen compounds during ammonia electrooxidation: effect of current density, chloride concentration and pH on nitrate formation

Author:

Galvão Neanderson1,Dutra Achilles Junqueira Bourdot2,Bassin João Paulo1ORCID

Affiliation:

1. Chemical Engineering Program, COPPE Federal University of Rio de Janeiro Rio de Janeiro Brazil

2. Metallurgical and Materials Engineering Program, COPPE Federal University of Rio de Janeiro Rio de Janeiro Brazil

Abstract

AbstractBACKGROUNDAmmonia removal from wastewater by electrooxidation (EO) is an interesting approach because of its efficiency and easy maintenance and operation. In this process, ammonia is oxidized to nitrate or nitrogen gas. Ammonia conversion to the latter is desirable to remove nitrogen from the liquid; however, the influence of several operating parameters on nitrate generation has not been systematically evaluated. Therefore, this work aimed to investigate the effect of current density (200–800 A m−2), chloride concentration (0–10 000 mg L) and initial pH (5–9) on the electrooxidation of an ammonia‐containing solution and the associated generation of nitrate. For this purpose, a laboratory‐scale electrochemical reactor containing two Ti/RuO2 electrodes was used.RESULTSThe results indicated high ammonia removal efficiency – 98% within 150 min at 800 A m−2 and 97% within 240 min at 500 A m−2 – generating around 70 and 102 mg ‐N L−1 under these conditions, respectively. Increasing the chloride concentration from 5000 to 7500 mg L−1 reduces the electrolysis time needed to remove all ammonia from 180 to 150 min. However, with increasing initial chloride concentration, the amount of nitrate generated rose from 69.5 to 135.9 mg N L−1. On the other hand, in the test without chloride, nitrate generation was considerably lower (0–0.61 mg  L−1).CONCLUSIONThe higher the current density applied, the greater the ammonia removal by EO. Although current density influenced the ammonia oxidation rates, it did not directly affect nitrate formation. The lower the concentration of ammonia in the solution, the more significant was the fraction of nitrate generated. Most of the inlet ammonia was oxidized to nitrogen gas, nitrite was rapidly oxidized to nitrate and higher chloride concentrations enhanced ammonia oxidation. © 2024 Society of Chemical Industry (SCI).

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3