Abstract
The catalytic pyrolysis of beech wood and corncob was experimentally investigated considering six additives containing alkali and alkaline earth metals (Na2CO3, NaOH, NaCl, KCl, CaCl2 and MgCl2). Thermogravimetric analyses (TGA) were carried out with raw feedstocks and samples impregnated with different concentrations of catalysts. In a bid to better interpret observed trends, measured data were analyzed using an integral kinetic modeling approach considering 14 different reaction models. As highlights, this work showed that cations (Na+, K+, Ca2+, and Mg2+) as well as anions (i.e., CO32−, OH−, and Cl−) influence pyrolysis in selective ways. Alkaline earth metals were proven to be more effective than alkali metals in fostering biomass decomposition, as evidenced by decreases in the characteristic pyrolysis temperatures and activation energies. Furthermore, the results obtained showed that the higher the basicity of the catalyst, the higher its efficiency as well. Increasing the quantities of calcium- and magnesium-based additives finally led to an enhancement of the decomposition process at low temperatures, although a saturation phenomenon was seen for high catalyst concentrations.
Funder
French Ministry of Higher Education, Research, and Innovation
Subject
Physical and Theoretical Chemistry,Catalysis,General Environmental Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献