Clean Syngas and Hydrogen Co-Production by Gasification and Chemical Looping Hydrogen Process Using MgO-Doped Fe2O3 as Redox Material

Author:

Bracciale Maria PaolaORCID,Damizia MartinaORCID,De Filippis PaoloORCID,de Caprariis Benedetta

Abstract

Gasification converts biomass into syngas; however, severe cleaning processes are necessary due to the presence of tars, particulates and contaminants. The aim of this work is to propose a cleaning method system based on tar physical adsorption coupled with the production of pure H2 via a chemical looping process. Three fixed-bed reactors with a double-layer bed (NiO/Al2O3 and Fe-based particles) working in three different steps were used. First, NiO/Al2O3 is used to adsorb tar from syngas (300 °C); then, the adsorbed tar undergoes partial oxidization by NiO/Al2O3 to produce CO and H2 used for iron oxide reduction. In the third step, the reduced iron is oxidized with steam to produce pure H2 and to restore iron oxides. A double-layer fixed-bed reactor was fed alternatively by guaiacol and as tar model compounds, air and water were used. High-thermal-stability particles 60 wt% Fe2O3/40 wt% MgO synthetized by the coprecipitation method were used as Fe-based particles in six cycle tests. The adsorption efficiency of the NiO/Al2O3 bed is 98% and the gas phase formed is able to partially reduce iron, favoring the reduction kinetics. The efficiency of the process related to the H2 production after the first cycle is 35% and the amount of CO is less than 10 ppm.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3