Author:
Ding Lu,Yang Mingming,Dong Kai,Vo Dai-Viet N.,Hungwe Douglas,Ye Jiahan,Ryzhkov Alexander,Yoshikawa Kunio
Abstract
AbstractDisaster-hit and/or un-electrified remote areas usually have electricity accessibility issues and an abundance of plant-derived debris and wood from destroyed wooden structures; this can be potentially addressed by employing a decentralized ultra-small biomass-fed gasification power generating system. This paper presents an assessment of the technical viability of an ultra-small gasification system that utilizes densified carbonized wood pellets/briquettes. The setup was run continuously for 100 h. A variety of biomass was densified and carbonized by harnessing fugitive heat sources before charging into the reactor. Carbonized briquettes and furnished blends exhibited inferior gasification performance compared to the carbonized pellets. In the absence of tar blockage problems, steady-state conditions were achieved when pre-treated feedstock was used. Under steady-state conditions for carbonized pellets gasification operated at an equivalence ratio of 0.32, cold gas efficiency and carbon conversion achieved 49.2% and 70.5%, respectively. Overall efficiency and maximum power output of 20.3% and 21 kW were realised, respectively. It was found that the system could keep stable while the low heating valve of syngas was over 4 MJ/m3 on condition that avoiding tar blocking issues. The results indicate that the proposed compact ultra-small power generation system is a technically feasible approach to remedy power shortage challenge. In addition, process simulation considering carbonized wood gasification combined power generation was formulated to produce syngas and electricity. Woody pellets with the flow rate of 20 kg/h could generate a 15.18 kW power at the air flow rate of 40 Nm3/h, which is in a good agreement with 15 kW in the 100 h operation. It is indicated that the gasification combined power generation cycle simulated by Aspen simulator could achieve reliable data to assist the complicated experiment operation.
Publisher
Springer Science and Business Media LLC
Subject
Energy Engineering and Power Technology,Geotechnical Engineering and Engineering Geology
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献