Abstract
The photocatalytic performances of doped and non-doped TiO2 photocatalysts (TiO2-s) were compared under solar and various types of artificial irradiation using phenol as a model contaminant. Non-doped (mainly anatase phase) TiO2-s had significantly higher photocatalytic efficiency than highly visible-light-active TiO2-s under natural solar irradiation. To explain these unexpected results, we measured the wavelength dependence of photocatalytic efficiency at six different wavelength ranges (λ = 300–650 nm). For this purpose, UV fluorescence tubes and five LED lights of different colors (violet, blue, green, yellow, and red) were used to activate the photocatalysts. The photon fluxes of the irradiation were measured, and apparent quantum yields were calculated for all irradiation conditions. The highest apparent quantum yield was 1.43% for our own TiO2 (prepared via flame hydrolysis) under UV irradiation. However, apparent quantum yields were significantly lower (by 1–2 orders of magnitude) in the visible range, even for the most visible-light-active TiO2.
Funder
Hungarian National Research, Development and Innovation Office—NKFIH
Subject
Physical and Theoretical Chemistry,Catalysis,General Environmental Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献