Effect of irradiation intensity on the rate of photocatalysis of TiO2 coatings obtained by detonation spraying

Author:

Sirota V. V.1,Savotchenko S. E.12ORCID,Strokova V. V.1ORCID,Vashchilin V. S.1,Podgornyi D. S.1,Limarenko M. V.1,Kovaleva M. G.3

Affiliation:

1. Belgorod V. G. Shoukhov State Technological University Belgorod Russia

2. Sergo Ordzhonikidze Russian State University for Geological Prospecting Moscow Russia

3. Belgorod State National Research University Belgorod Russia

Abstract

AbstractThe influence of UV irradiation intensity on the rate constant of photocatalytic reaction of TiO2 coatings applied by detonation spraying on the hot‐rolled carbon steel and glass‐cloth‐base laminate (plastic) is studied. The effect of substrate material on the studied phenomenon is pronounced. The kinetic curves at different UV irradiation intensities and the rate constants of the photocatalytic reaction are obtained for different values of energy flux density varied from 3.0 to 8.0 mW/m2. The photocatalytic rate constant of coatings placed on plastic increases with an increase in the energy flux density from.038 to.055 1/h. Samples applied at a spray distance of 50 mm are characterized by a higher the photocatalytic rate constant than those applied at a distance of 40 mm. The value of photocatalytic rate constant does not change starting from a certain flow value for such samples and reaches the saturation value of about.054 1/h. Saturation is achieved quite quickly already at a density flux of about 5.5 mW/m2. Two new phenomenological models based on differential equation, the analytical solutions to which sufficiently describe experimental dependence of the photocatalytic rate constant on the energy flux density, are proposed.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3