Role of the Potential Range during Stress Testing of Platinum-Containing Electrocatalysts at Elevated Temperature

Author:

Gerasimova IrinaORCID,Belenov SergeyORCID,Lyanguzov Nikolai,Pankov IlyaORCID,Tolstunov Mikhail,Pavlets Angelina

Abstract

The durability of low temperature proton exchange membrane fuel cell (PEMFC) catalysts crucially affects their lifetime. The choice of carbon support is important in terms of increasing the stability of catalysts. In this research, Pt/C samples were obtained using the polyol synthesis method on two types of carbon supports: the standard support, Vulcan XC-72, and carbon support with a high degree of graphitization, ECS-002402. One method for assessing structural characteristics is through transmission electron microscopy (TEM), according to which materials G1 and G2 showed an average nanoparticle size of 3.7 and 4.2 nm, respectively. On all catalysts, the oxygen reduction reaction proceeded according to the four electron mechanism. Durability was assessed by changes in ESA and activity in the ORR after 1000 cycles, with changes in the upper potential values: 0.7; 1.0; 1.2; and 1.4 V. After accelerated stress testing, the G1 material showed the greatest residual activity at a potential of 1.4 V (165 A/g (Pt). Based on the results of comparing various ADT protocols, the optimal mode of 0.4 and 1.4 V was chosen, and should be used for further studies comparing the durability of Pt/C catalysts.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3