Abstract
Spin-polarized van der Waals corrected density functional theory calculations were applied to Sn–Pt alloys with Pt content ≤ 50% (referred to as low Pt alloys) to evaluate their catalytic activity towards the dehydrogenation of methylcyclohexane (MCH), with the formation of toluene as product. The calculated adsorption energies of MCH, its intermediates and toluene showed that these molecules bind on the considered Sn–Pt alloys. Sn–Pt alloys had the lowest dehydrogenation energetics, indicating that the activity of this catalytic material is superior to that of a pristine Pt catalyst. Desorption of the intermediate species was feasible for all Sn–Pt alloy configurations considered. The catalytic dehydrogenation reaction energetics for the various Sn–Pt alloy configurations were more favourable than that achieved with pristine Pt surfaces. The current study should motivate experimental realization of Sn–Pt alloys for the catalytic dehydrogenation reaction of MCH.
Subject
Physical and Theoretical Chemistry,Catalysis,General Environmental Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献