Hydrogen Carriers: Scientific Limits and Challenges for the Supply Chain, and Key Factors for Techno-Economic Analysis

Author:

Clematis Davide1ORCID,Bellotti Daria2ORCID,Rivarolo Massimo2,Magistri Loredana2,Barbucci Antonio13ORCID

Affiliation:

1. Department of Civil, Chemical and Environmental Engineering, University of Genoa, Via All’Opera Pia 15, 16145 Genoa, Italy

2. Thermochemical Power Group, DIME, University of Genoa, Via Montallegro 1, 16145 Genoa, Italy

3. Institute of Condensed Matter Chemistry and Technology for Energy, National Research Council (CNR-ICMATE), Via de Marini 6, 16149 Genoa, Italy

Abstract

Hydrogen carriers are one of the keys to the success of using hydrogen as an energy vector. Indeed, sustainable hydrogen production exploits the excess of renewable energy sources, after which temporary storage is required. The conventional approaches to hydrogen storage and transport are compressed hydrogen (CH2) and liquefied hydrogen (LH2), which require severe operating conditions related to pressure (300–700 bar) and temperature (T < −252 °C), respectively. To overcome these issues, which have hindered market penetration, several alternatives have been proposed in the last few decades. In this review, the most promising hydrogen carriers (ammonia, methanol, liquid organic hydrogen carriers, and metal hydrides) have been considered, and the main stages of their supply chain (production, storage, transportation, H2 release, and their recyclability) have been described and critically analyzed, focusing on the latest results available in the literature, the highlighting of which is our current concern. The last section reviews recent techno-economic analyses to drive the selection of hydrogen carrier systems and the main constraints that must be considered. The analyzed results show how the selection of H2 carriers is a multiparametric function, and it depends on technological factors as well as international policies and regulations.

Funder

PNRR programme project NEST-NETWORK 4 ENERGY SUSTAINABLE TRANSITION, Spoke 4

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3