Abstract
As a new kind of multifunctional energetic structural material (MESM), amorphous alloy will undergo a chemical reaction and release energy under impact load. In this paper, an analysis method for the impact-induced reaction parameters of solid materials was derived based on a three-term equation of state and Avrami–Erofeev equation. The relation between the degree of reaction, pressure, and temperature of Zr68.5Cu12Ni12Al7.5 amorphous alloy was obtained. The influence of participation of an oxidizing reaction on the material energy release efficiency was analyzed. The relation between the energy release efficiency and impact velocity was achieved by an experiment in which Zr68.5Cu12Ni12Al7.5 amorphous alloy fragments impact a steel plate. The variations of pressure and temperature during the impact process were obtained. In the end, a reaction kinetic model was modified, and the kinetic parameters for the impact-induced reaction of materials in an air environment were obtained.
Subject
General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献