Energetic Materials Based on W/PTFE/Al: Thermal and Shock-Wave Initiation of Exothermic Reactions

Author:

Saikov IvanORCID,Seropyan Stepan,Malakhov Andrey,Saikova Gulnaz,Denisov Igor,Petrov EvgeniiORCID

Abstract

The parameters of combustion synthesis and shock-wave initiation of reactive W/PTFE/Al compacts are investigated. Preliminary thermodynamic calculations showed the possibility of combustion of the W/PTFE/Al system at high adiabatic temperatures (up to 2776 °C) and a large proportion of condensed combustion products. The effect of the Al content (5, 10, 20, and 30 wt%) in the W/PTFE/Al system on the ignition and development of exothermic reactions was determined. Ignition temperatures and combustion rates were measured in argon, air, and rarefied air. A correlation between the gas medium, rate, and temperature of combustion was found. The shock initiation in W/PTFE/Al compacts with different Al content was examined. The extent of reaction in all compacts was studied by X-ray diffraction. The compositions with 10 and 20 wt% Al showed the highest completeness of synthesis after combustion and shock-wave initiation.

Funder

Russian Foundation for Basic Research

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3