Adaptive Locomotion Learning for Quadruped Robots by Combining DRL with a Cosine Oscillator Based Rhythm Controller

Author:

Zhang Xiaoping12ORCID,Wu Yitong1ORCID,Wang Huijiang2,Iida Fumiya2,Wang Li1

Affiliation:

1. School of Electrical and Control Engineering, North China University of Technology, Beijing 100144, China

2. Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK

Abstract

Animals have evolved to adapt to complex and uncertain environments, acquiring locomotion skills for diverse surroundings. To endow a robot’s animal-like locomotion ability, in this paper, we propose a learning algorithm for quadruped robots based on deep reinforcement learning (DRL) and a rhythm controller that is based on a cosine oscillator. For a quadruped robot, two cosine oscillators are utilized at the hip joint and the knee joint of one leg, respectively, and, finally, eight oscillators form the controller to realize the quadruped robot’s locomotion rhythm during moving. The coupling between the cosine oscillators of the rhythm controller is realized by the phase difference, which is simpler and easier to realize when dealing with the complex coupling relationship between different joints. DRL is used to help learn the controller parameters and, in the reward function design, we address the challenge of terrain adaptation without relying on the complex camera-based vision processing but based on the proprioceptive information, where a state estimator is introduced to achieve the robot’s posture and help finally utilize the food-end coordinate. Experiments are carried out in CoppeliaSim, and all of the flat, uphill and downhill conditions are considered. The results show that the robot can successfully accomplish all the above skills and, at the same time, with the reward function designed, the robot’s pitch angle, yaw angle and roll angle are very small, which means that the robot is relatively stable during walking. Then, the robot is transplanted to a new scene; the results show that although the environment is previously unencountered, the robot can still fulfill the task, which demonstrates the effectiveness and robustness of this proposed method.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Velocity Tracking Method for Quadruped Robot with Rhythm Controller;2024 IEEE 13th Data Driven Control and Learning Systems Conference (DDCLS);2024-05-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3