Time-Sensitive and Resource-Aware Concurrent Workflow Scheduling for Edge Computing Platforms Based on Deep Reinforcement Learning

Author:

Zhang Jiaming1,Wang Tao2,Cheng Lianglun2

Affiliation:

1. School of Computer Science and Technology, Guangdong University of Technology, Guangzhou 510006, China

2. School of Automation, Guangdong University of Technology, Guangzhou 510006, China

Abstract

The workflow scheduling on edge computing platforms in industrial scenarios aims to efficiently utilize the computing resources of edge platforms to meet user service requirements. Compared to ordinary task scheduling, tasks in workflow scheduling come with predecessor and successor constraints. The solutions to scheduling problems typically include traditional heuristic methods and modern deep reinforcement learning approaches. For heuristic methods, an increase in constraints complicates the design of scheduling rules, making it challenging to devise suitable algorithms. Additionally, whenever the environment undergoes updates, it necessitates the redesign of the scheduling algorithms. For existing deep reinforcement learning-based scheduling methods, there are often challenges related to training difficulty and computation time. The addition of constraints makes it challenging for neural networks to make decisions while satisfying those constraints. Furthermore, previous methods mainly relied on RNN and its variants to construct neural network models, lacking a computation time advantage. In response to these issues, this paper introduces a novel workflow scheduling method based on reinforcement learning, which utilizes neural networks for direct decision-making. On the one hand, this approach leverages deep reinforcement learning, eliminating the need for researchers to define complex scheduling rules. On the other hand, it separates the parsing of the workflow and constraint handling from the scheduling decisions, allowing the neural network model to focus on learning how to schedule without the necessity of learning how to handle workflow definitions and constraints among sub-tasks. The method optimizes resource utilization and response time, as its objectives and the network are trained using the PPO algorithm combined with Self-Critic, and the parameter transfer strategy is utilized to find the balance point for multi-objective optimization. Leveraging the advantages of reinforcement learning, the network can be trained and tested using randomly generated datasets. The experimental results indicate that the proposed method can generate different scheduling outcomes to meet various scenario requirements without modifying the neural network. Furthermore, when compared to other deep reinforcement learning methods, the proposed approach demonstrates certain advantages in scheduling performance and computation time.

Funder

National key R & D

National Natural Science Foundation of China

Guangdong Provincial Key Laboratory of Cyber-Physical System

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3