Edge-computing-driven Internet of Things: A Survey

Author:

Kong Linghe1ORCID,Tan Jinlin1ORCID,Huang Junqin1ORCID,Chen Guihai1ORCID,Wang Shuaitian1ORCID,Jin Xi2ORCID,Zeng Peng2ORCID,Khan Muhammad3ORCID,Das Sajal K.4ORCID

Affiliation:

1. Shanghai Jiao Tong University, Dongchuan Road, Shanghai, China

2. Shenyang Institute of Automation, Chinese Academy of Sciences, Chuangxin Road, Hunnan District, Shenyang City, Liaoning Province, China

3. King Saud University, Kingdom of Saudi Arabia, Riyadh

4. Missouri University of Science and Technology, Rolla, MO, USA

Abstract

The Internet of Things (IoT) is impacting the world’s connectivity landscape. More and more IoT devices are connected, bringing many benefits to our daily lives. However, the influx of IoT devices poses non-trivial challenges for the existing cloud-based computing paradigm. In the cloud-based architecture, a large amount of IoT data is transferred to the cloud for data management, analysis, and decision making. It could not only cause a heavy workload on the cloud but also result in unacceptable network latency, ultimately undermining the benefits of cloud-based computing. To address these challenges, researchers are looking for new computing models for the IoT. Edge computing, a new decentralized computing model, is valued by more and more researchers in academia and industry. The main idea of edge computing is placing data processing in near-edge devices instead of remote cloud servers. It is promising to build more scalable, low-latency IoT systems. Many studies have been proposed on edge computing and IoT, but a comprehensive survey of this crossover area is still lacking. In this survey, we first introduce the impact of edge computing on the development of IoT and point out why edge computing is more suitable for IoT than other computing paradigms. Then, we analyze the necessity of systematical investigation on the edge-computing-driven IoT (ECDriven-IoT) and summarize new challenges occurring in ECDriven-IoT. We categorize recent advances from bottom to top, covering six aspects of ECDriven-IoT. Finally, we conclude lessons learned and propose some challenging

Funder

NSFC

Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, and Open Research Projects of Zhejiang

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3