Recommendations for Responding to System Security Incidents Using Knowledge Graph Embedding

Author:

Kim HyoungJu1ORCID,Choi Junho2ORCID

Affiliation:

1. Institute of AI Convergence, Chosun University, Gwangju 61452, Republic of Korea

2. Division of Undeclared Majors, Chosun University, Gwangju 61452, Republic of Korea

Abstract

Recently, security attacks occurring in edge computing environments have emerged as an important research topic in the field of cybersecurity. Edge computing is a distributed computing technology that expands the existing cloud computing architecture to introduce a new layer, the edge layer, between the cloud layer and the user terminal layer. Edge computing has the advantage of greatly improving the data processing speed and efficiency but, at the same time, is complex, and various new attacks occur frequently. Therefore, for improving the security of edge computing, effective and intelligent security strategies and policies must be established in consideration of a wide range of vulnerabilities. Intelligent security systems, which have recently been studied, provide a way to detect and respond to security threats by integrating the latest technologies, such as machine learning and big data analysis. Intelligent security technology can quickly recognize attack patterns or abnormal behaviors within a large amount of data and continuously respond to new threats through learning. In particular, knowledge-based technologies using ontology or knowledge graph technology play an important role in more deeply understanding the meaning and relationships between of security data and more effectively detecting and responding to complex threats. This study proposed a method for recommending strategies to respond to edge computing security incidents based on the automatic generation and embedding of security knowledge graphs. An EdgeSecurity–BERT model, utilizing the latest security vulnerability data from edge computing, was designed to extract entities and their relational information. Also, a security vulnerability assessment method was proposed to recommend strategies to respond to edge computing security incidents through knowledge graph embedding. In the experiment, the classification accuracy of security news data for common vulnerability and exposure data was approximately 86% on average. In addition, the EdgeSecurityKG applying the security vulnerability similarity improved the Hits@10 performance to identify the correct link, but the MR performance was degraded owing to the increased complexity. In complex areas, such as security, careful evaluation of the model’s performance and data selection are important. The EdgeSecurityKG applying the security vulnerability similarity provides an important advantage in understanding complex security vulnerability relationships.

Funder

Chosun University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3