TABASCO—Topology Algorithm That Benefits from Adaptation of Sorted Compliances Optimization

Author:

Bochenek Bogdan1ORCID,Tajs-Zielińska Katarzyna1ORCID

Affiliation:

1. Faculty of Mechanical Engineering, Cracow University of Technology, 31-155 Krakow, Poland

Abstract

Although structural topology optimization has been developing for decades, it still plays a leading role within the area of engineering design. Solving contemporary design problems coming from industry requires the implementation of efficient methods and approaches. This stimulates research progress in the development of novel and versatile topology optimization algorithms. To follow these modern trends, an original topology generator has been elaborated and finally built as a Cellular Automaton with original update rules. The motivation for building the algorithm in this way came from the idea of utilizing the benefits of local compliances sorting. This is conducted on two levels: on the global level, the monotonic function mapping local compliances distribution is defined based on their sorted values; on the local level, for each cell, the compliances are sorted within the cell neighborhood. The three largest absolute values are selected, and these are the basis from which to formulate Cellular Automata update rules. These original rules can efficiently control the generation of structural topologies. This technique is somewhat inspired by the grey wolf optimizer strategy, wherein the process of updating design variables refers to the positions of the three best fitted wolves. It is proposed that we refer to the topology algorithm that benefits from the adaptation of sorted compliances optimization as TABASCO. The developed algorithm is a modified version of the flexible Cellular Automata one presented previously. The implemented extension, regarding the local level cell sorting, allows us to improve the resulting compliance values. The advantages of the algorithm, both from numerical and practical engineering points of view, as compared to the others developed within the field, may be gathered as follows: the algorithm works based on simple update rules, i.e., its numerical implementation is not complicated; it does not require gradient computations; filtering techniques are not needed; and it can easily be combined with professional structural analysis programs which allow engineering applications. The developed topology generator has been linked with ANSYS to show that it can be incorporated into a commercial structural analysis package. This is especially important with respect to the engineering implementations.

Funder

Faculty of Mechanical Engineering Cracow University of Technology

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3