Exploring the ViDiDetect Tool for Automated Defect Detection in Manufacturing with Machine Vision

Author:

Dziubek Mateusz1,Rysiński Jacek1ORCID,Jancarczyk Daniel1ORCID

Affiliation:

1. Faculty of Mechanical Engineering and Computer Science, University of Bielsko-Biala, 43-309 Bielsko-Biala, Poland

Abstract

Automated monitoring of cutting tool wear is of paramount importance in the manufacturing industry, as it directly impacts production efficiency and product quality. Traditional manual inspection methods are time-consuming and prone to human error, necessitating the adoption of more advanced techniques. This study explores the application of ViDiDetect, a deep learning-based defect detection solution, in the context of machine vision for assessing cutting tool wear. By capturing high-resolution images of machining tools and analyzing wear patterns, machine vision systems offer a non-contact and non-destructive approach to tool wear assessment, enabling continuous monitoring without disrupting the machining process. In this research, a smart camera and an illuminator were utilized to capture images of a car suspension knuckle’s machined surface, with a focus on detecting burrs, chips, and tool wear. The study also employed a mask to narrow the region of interest and enhance classification accuracy. This investigation demonstrates the potential of machine vision and ViDiDetect in automating cutting tool wear assessment, ultimately enhancing manufacturing processes’ efficiency and product quality. The project is at the implementation stage in one of the automotive production plants located in southern Poland.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3