Methodology for Tool Wear Detection in CNC Machines Based on Fusion Flux Current of Motor and Image Workpieces

Author:

Díaz-Saldaña Geovanni1ORCID,Osornio-Ríos Roque Alfredo1ORCID,Zamudio-Ramírez Israel12ORCID,Cruz-Albarrán Irving Armando1ORCID,Trejo-Hernández Miguel1,Antonino-Daviu Jose Alfonso2ORCID

Affiliation:

1. CA Mecatrónica, Facultad de Ingeniería, Campus San Juan del Río, Universidad Autónoma de Querétaro, Av. Río Moctezuma 249, San Juan del Río, Querétaro 76807, Mexico

2. Instituto Tecnológico de la Energía, Universitat Politècnica de València (UPV), Camino de Vera s/n, 46022 Valencia, Spain

Abstract

In the manufacturing industry, computer numerical control (CNC) machine tools are of great importance since the processes in which they are used allow the creation of elements used in multiple sectors. Likewise, the condition of the cutting tools used is paramount due to the effect they have on the process and the quality of the supplies produced. For decades, methodologies have been developed that employ various signals and sensors for wear detection, prediction and monitoring; however, this field is constantly evolving, with new technologies and methods that have allowed the development of non-invasive, efficient and robust systems. This paper proposes the use of magnetic stray flux and motor current signals from a CNC lathe and the analysis of images of machined parts for wear detection using online and offline information under the variation in cutting speed and tool feed rate. The information obtained is processed through statistical and non-statistical indicators and dimensionally reduced by linear discriminant analysis (LDA) and a feed-forward neural network (FFNN) for wear classification. The results obtained show a good performance in wear detection using the individual signals, achieving efficiencies of 77.5%, 73% and 89.78% for the analysis of images, current and stray flux signals, respectively, under the variation in cutting speed, and 76.34%, 73% and 63.12% for the analysis of images, current and stray flux signals, respectively, under the variation of feed rate. Significant improvements were observed when the signals are fused, increasing the efficiency up to 95% for the cutting speed variations and 82.84% for the feed rate variations, achieving a system that allows detecting the wear present in the tools according to the needs of the process (online/offline) under different machining parameters.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Reference54 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3