High-Performance Flux Tracking Controller for Reluctance Actuator

Author:

Liu Yang1,Miao Qian1,Dong Yue1

Affiliation:

1. Center of Ultra-Precision Optoelectronic Instrument Engineering, Harbin Institute of Technology, Harbin 150080, China

Abstract

To meet the ever-increasing demand for next-generation lithography machines, the actuator plays an important role in the achievement of high acceleration of the wafer stage. However, the voice coil motor, which is widely used in high-precision positioning systems, is reaching its physical limits. To tackle this problem, a novel way to design the actuator using the magnetoresistance effect is argued due to the high force densities. However, the strong nonlinearity limits its application in the nan-positioning system. In particular, the hysteresis is coupled with eddy effects and displacement, which lead to a rate-dependent and displacement-dependent hysteresis effect in the reluctance actuator. In this paper, a Hammerstein structure is used to model the rate-dependent reluctance actuator. At the same time, the displacement-dependent of the model is regarded as the interference with the system. Additionally, a control strategy combining inverse model compensation and the disturbance observer-based discrete sliding mode control was proposed, which can effectively suppress the hysteresis effect. It is worthy pointing out that the nonlinear system is transformed into a linear system with inversion bias and disturbance by the inverse model compensation. What is more, the sliding mode controller based on the disturbance observer is designed to deal with the unmodeled dynamics, displacement disturbances, and model identification errors in linear systems. Thus, the tracking performance and robustness to external disturbances of the system are improved. The simulation results show that it is superior to the PI controller combined with an inverse compensator and even to the discrete sliding mode controller connected with inverse compensator, confirming the effectiveness of the novel control method in alleviating hysteresis.

Funder

National Natural Science Foundation of China

Opening Foundation of State Key Lab of Digital Manufacturing Equipment & Technology, China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3