Parametric Analysis for Hybrid–Electric Regional Aircraft Conceptual Design and Development

Author:

Palaia Giuseppe1ORCID,Abu Salem Karim1ORCID,Quarta Alessandro A.1ORCID

Affiliation:

1. Department of Civil and Industrial Engineering, University of Pisa, Via G. Caruso 8, 56122 Pisa, Italy

Abstract

This paper proposes a conceptual analysis of the limitations related to the development (and integration) of hybrid–electric propulsion on regional transport aircraft, with the aim to identify a feasibility space for this innovative aircraft concept. Hybrid–electric aircraft have attracted the interest of aeronautical research as these have the potential to reduce fuel consumption and, thus, the related greenhouse gas emissions. Nevertheless, considering the development of such an aircraft configuration while keeping the constraints deriving from technological and/or operating aspects loose could lead to the analysis of concepts that are unlikely to be realised. In this paper, specifically to outline the boundaries constraining the actual development of such aircraft, the influence on overall aircraft design and performance of the main technological, operating, and design factors characterising the development of such a configuration is analysed and discussed at a conceptual level. Specifically, the current achievable gravimetric battery energy density (BED) is identified as the main limiting factor for the development of regional hybrid–electric aircraft, and a sensitivity analysis shows the correlation of this important technological parameter with aircraft performance in terms of both fuel consumption and energy efficiency. In this context, minimum technological development thresholds are therefore identified to enable the effective development of this type of aircraft; namely, a minimum of BED = 500 Wh/kg at battery pack level is identified as necessary to provide tangible benefits. From an operating point of view, flight distance is the most limiting design requirement, and a proper assessment of the design range is necessary if a hybrid–electric aircraft is to be designed to achieve lower emissions than the state of the art; flight ranges equal to or lower than 600 nm are to be considered for this type of aircraft. As a bridging of both of the previous constraints, a change in the design paradigm with respect to established practices for state-of-the-art aircraft is necessary. More specifically, penalisations in maximum take-off weight and overall aircraft energy efficiency may be necessary if the aim is to reduce direct in-flight consumption by means of integration of hybrid–electric powertrains.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3