Preliminary Performance Analysis of Medium-Range Liquid Hydrogen-Powered Box-Wing Aircraft

Author:

Palaia Giuseppe1ORCID,Abu Salem Karim1ORCID,Carrera Erasmo1

Affiliation:

1. Mul2 Group, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy

Abstract

This paper proposes a performance analysis of a medium-range airliner powered by liquid hydrogen (LH2) propulsion. The focus is on operating performance in terms of achievable payload and range. A non-conventional box-wing architecture was selected to maximize operating performance. An optimization-based multidisciplinary design framework was developed to retrofit a baseline medium-range box-wing aircraft by designing and integrating the fuel tanks needed to store the LH2; several solutions were investigated for tank arrangement and layout by means of sensitivity analyses. As a main outcome, a performance analysis of the proposed LH2-powered box-wing aircraft is provided, highlighting the impact of the introduction of this energy carrier (and the integration of the related tank systems) on aircraft operating performance; a comparative study with respect to a competitor LH2-retrofitted tube-and-wing aircraft is also provided, to highlight the main possible operating differences between the two architectures. The findings reveal that the retrofitted box-wing can achieve long-range flights at the cost of a substantially reduced payload, mainly due to the volume limitations imposed by the installation of LH2 tanks, or it can preserve payload capacity at the expense of a significant reduction in range, as the trade-off implies a reduction in on-board LH2 mass. Specifically, the studied box-wing configuration can achieve a range of 7100 km transporting 150 passengers, or shorter ranges of 2300 km transporting 230 passengers. The competitor LH2-retrofitted tube-and-wing aircraft, operating in the same category and compatible with the same airport apron constraints, could achieve a distance of 1500 km transporting 110 passengers.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3