Microbial Colony Detection Based on Deep Learning

Author:

Yang Fan1,Zhong Yongjie1,Yang Hui2,Wan Yi2,Hu Zhuhua12ORCID,Peng Shengsen1

Affiliation:

1. School of Information and Communication Engineering, Hainan University, Haikou 570228, China

2. State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China

Abstract

In clinical drug sensitivity experiments, it is necessary to plate culture pathogenic bacteria and pick suitable colonies for bacterial solution preparation, which is a process that is currently carried out completely by hand. Moreover, the problems of plate contamination, a long culture period, and large image annotation in colony plate image acquisition can lead to a small amount of usable data. To address the issues mentioned above, we adopt a deep learning approach and conduct experiments on the AGAR dataset. We propose to use style transfer to extend the trainable dataset and successfully obtain 4k microbial colony images using this method. In addition, we introduce the Swin Transformer as a feature extraction network in the Cascade Mask R-CNN model architecture to better extract the feature information of the images. After our experimental comparison, the model achieves a mean Average Precision (mAP) of 61.4% at the Intersection over Union (IoU) [0.50:0.95]. This performance surpasses that of the Cascade R-CNN with HRNet, which is the top-performing model in experiments conducted on the AGAR dataset, by a margin of 2.2%. Furthermore, we perform experiments using YOLOv8x on the AGAR dataset, which results in a mAP of 76.7%.

Funder

Central Government Guides Local Science and Technology Development Projects

Hainan Province Science and Technology Special Fund

National Natural Science Foundation of China

Collaborative Innovation Center of Marine Science and Technology, Hainan University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference44 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3