Review of Mechanisms and Suppression Methods for Low-Frequency Pressure Fluctuations in Open-Jet Wind Tunnels

Author:

Jin Ling1ORCID,Deng Xiao Bing2ORCID,Wang Xunnian1,Zhang Junlong1,Zeng Weiping1

Affiliation:

1. China Aerodynamics Research and Development Center, Mianyang 621000, China

2. State Key Laboratory of Aerodynamics, Mianyang 621000, China

Abstract

Low-frequency pressure fluctuations are common in open-jet wind tunnels, affecting test accuracy and posing safety risks to the wind tunnels. These oscillations can be caused by different mechanisms in different wind tunnels, and it is often necessary to identify the specific mechanism responsible for the oscillation and develop appropriate control methods. This paper presents a comprehensive review of the current state of research on low-frequency pressure fluctuations in subsonic open-jet wind tunnels, with a particular emphasis on their generation mechanisms and control strategies. The primary source of excitation is attributed to the edgetone feedback formed by the impingement of the jet on the collector. The sound wavelength corresponding to the edgetone frequency is close to that of the plenum scale, facilitating resonance with both plenum-associated vibration modes and specific-order standing wave modes within the circuit loop, resulting in significant low-frequency pulsations. Passive control methods such as nozzle vortex generators and collector breathing gaps have been extensively employed due to their cost-effectiveness and efficiency. The concluding section highlights some unresolved issues that require further investigation in this field.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference63 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3