Author:
Shen Yiou,Tan Jiayi,Fernandes Luis,Qu Zehua,Li Yan
Abstract
It is well-known that the presence of the delamination in a plant fiber-reinforced composite is difficult to detect. However, the delamination introduces a local flexibility, which changes the dynamic characteristics of the composite structure. This paper presents a new methodology for composite laminate delamination detection, which is based on dynamic mechanical analysis. A noticeable delamination-induced storage modulus reduction and loss factor enhancement have been observed when the delaminated laminate was subjected to a forced oscillation compared to the intact composite laminate. For delamination area of 12.8% of the whole area of the composite laminate, loss factor of approximately 12% increase was observed. For near-to-surface delamination position, loss factor of approximately an 18% increment was observed. The results indicate that the delamination can be reliably detected with this method, and delamination position shows greater influence on the loss factor than that of the delamination size. Further investigations on different frequencies and amplitudes configurations show that the variation of loss factor is more apparently with low frequency as well as the low amplitude.
Funder
Shanghai Natural Science Foundation
National Natural Science Foundation
Subject
General Materials Science
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献