Abstract
Temperature and moisture can cause degradation to the impact properties of plant fiber-based composites owing to their complex chemical composition and multi-layer microstructure. This study focused on experimental characterization of the effect of important influencing factors, including manufacturing process temperature, exposure temperature, and water absorption, on the impact damage threshold and damage mechanisms of flax fiber reinforced composites. Firstly, serious reduction on the impact damage threshold and damage resistance was observed, this indicated excessive temperature can cause chemical decomposition and structural damage to flax fiber. It was also shown that a moderate high temperature resulted in lower impact damage threshold. Moreover, a small amount of water absorption could slightly improve the damage threshold load and the damage resistance. However, more water uptake caused severe degradation on the composite interface and structural damage of flax fiber, which reduced the impact performance of flax fiber reinforced composites.
Funder
National Natural Science Foundation
China National Funds for Distinguished Young Scientists
Subject
General Materials Science
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献