Prediction of NOx Emission Based on Data of LHD On-Board Monitoring System in a Deep Underground Mine

Author:

Banasiewicz Aleksandra1ORCID,Śliwiński Paweł2ORCID,Krot Pavlo1ORCID,Wodecki Jacek1ORCID,Zimroz Radosław1ORCID

Affiliation:

1. Faculty of Geoengineering, Mining and Geology, Wroclaw University of Science and Technology, Na Grobli 15, 50-421 Wroclaw, Poland

2. KGHM Polska Miedz S.A., ul. Marii Skłodowskiej-Curie 48, 59-301 Lubin, Poland

Abstract

The underground mining industry is at the forefront when it comes to unsafe conditions at workplaces. As mining depths continue to increase and the mining fronts move away from the ventilation shafts, gas hazards are increasing. In this article, the authors developed a statistical polynomial model for nitrogen oxide (NOx) emission prediction of the LHD vehicle with a diesel engine. The best-achieved prediction accuracy by the 4th order polynomial model for 11 and 10 input variables is about 8% and 13%, respectively. It is comparable with the sensors’ accuracy of 10% at a stable regime of loading and 20% in the transient periods of operation. The obtained results allow planning of ventilation system capacity and power demand for the large fleet of vehicles in the deep underground mines.

Funder

European Institute of Innovation and Technology

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference46 articles.

1. Distinctive model of mine safety for sustainable mining in Pakistan;Jiskani;Mining Metall. Explor.,2020

2. Hebda-Sobkowicz, J., Gola, S., Zimroz, R., and Wyłomańska, A. (2019). Identification and statistical analysis of impulse-like patterns of carbon monoxide variation in deep underground mines associated with the blasting procedure. Sensors, 19.

3. Technical condition change detection using Anderson–Darling statistic approach for LHD machines—Engine overheating problem;Wodecki;Int. J. Min. Reclam. Environ.,2017

4. Wyłomańska, A., and Zimroz, R. (2015). Stochastic Models, Statistics and THEIR Applications, Springer.

5. Michalak, A., Śliwiński, P., Kaniewski, T., Wodecki, J., Stefaniak, P., Wyłomańska, A., and Zimroz, R. (2019). Proceedings of the 27th International Symposium on Mine Planning and Equipment Selection-MPES 2018, Springer.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3