NOx Emission Prediction of Diesel Vehicles in Deep Underground Mines Using Ensemble Methods

Author:

Kotyla Michalina1ORCID,Banasiewicz Aleksandra1ORCID,Krot Pavlo1ORCID,Śliwiński Paweł2,Zimroz Radosław1ORCID

Affiliation:

1. Faculty of Geoengineering, Mining and Geology, Wroclaw University of Science and Technology, Na Grobli 15, 50-421 Wroclaw, Poland

2. KGHM Polska Miedź S.A., M. Sklodowskiej-Curie 48, 59-301 Lubin, Poland

Abstract

The mining industry faces persistent challenges related to hazardous gas emissions. Diesel engine-powered wheeled vehicles are commonly used during work shifts and are a primary source of nitrogen oxides (NOx) in underground mines. Despite diesel engine manufacturers providing gas generation data, mining companies need to predict NOx emissions from numerous load-haul-dumping (LHD) vehicles operating under dynamic conditions and not always equipped with gas sensors. This study focused on two ensemble methods: bootstrap aggregation (bagging) and least-square boosting (boosting) to predict NOx emissions. These approaches combine multiple weaker statistical models to yield a robust result. The innovation of this research is in the statistical analysis and selection of LHD vehicles’ working parameters, which are most suitable for NOx emission prediction; development of the procedure of source data cleaning and processing, model building and analyzing factors, which may influence the accuracy; and the comparison of two ensemble methods and showing their advantages and limitations for this specific engineering application, which was not previously reported in the literature. For datasets obtained from the same LHD vehicle and different operators, the more efficient bagging method gave a coefficient of determination R2 > 0.79 and the RMSE (root mean square error) was under 30 ppm, which is comparable with the measurement accuracy for transient regimes of physical NOx sensors available in the market. The obtained insights can be utilized as input for mine ventilation systems, enhancing mining transport management, reducing workplace air pollution, improving work planning, and enhancing personnel safety.

Funder

European Institute of Innovation and Technology

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3