Thermogram Based Indirect Thermographic Temperature Measurement of Reactive Power Compensation Capacitors

Author:

Hulewicz Arkadiusz1ORCID,Dziarski Krzysztof2ORCID,Drużyński Łukasz2,Dombek Grzegorz2ORCID

Affiliation:

1. Institute of Electrical Engineering and Electronics, Poznan University of Technology, Piotrowo 3A, 60-965 Poznan, Poland

2. Institute of Electric Power Engineering, Poznan University of Technology, Piotrowo 3A, 60-965 Poznan, Poland

Abstract

An increase in reactive power consumption results in an increase in electricity costs. This negative phenomenon can be prevented by using reactive power compensation methods. One of them is the installation of capacitors. These capacitors are exposed to external conditions, such as temperature and humidity. As a consequence, the aging process occurs. Another negative phenomenon is the corrosion that occurs inside the capacitor as a result of moisture absorption. As a result of this phenomenon, the capacitor can be damaged. One of the symptoms of the ongoing corrosion of the inside of the capacitor is an increase in temperature. Capacitors designed for reactive power compensation operate at mains voltage. They are often placed in a switchgear. For this reason, the use of contact methods of temperature measurement is difficult and dangerous. An alternative is thermographic measurement. Determining the internal temperature of the capacitor by thermographic measurement of the temperature of the case is possible with the use of numerical methods. One of them is FEM (Finite Element Method). The temperature results on the capacitor housing obtained from the simulation work were verified by comparing them with the result of thermographic temperature measurement. Both values differed by 0.2 °C. On the basis of the defined model, the differences between the temperature inside the capacitor housing and the temperature on the capacitor housing were determined by simulation. A simplification was proposed by replacing the cylinder made of layers with a homogeneous cylinder.

Funder

Ministry of Education and Science of Poland

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3