Indirect Thermographic Temperature Measurement of a Power Rectifying Diode Die under Forced Convection Conditions

Author:

Dziarski Krzysztof1ORCID,Hulewicz Arkadiusz2ORCID,Drużyński Łukasz1,Dombek Grzegorz1ORCID

Affiliation:

1. Institute of Electric Power Engineering, Poznan University of Technology, Piotrowo 3A, 60-965 Poznan, Poland

2. Institute of Electrical Engineering and Industry Electronics, Poznan University of Technology, Piotrowo 3A, 60-965 Poznan, Poland

Abstract

The supply of energy with the correct parameters to electrical appliances is possible with the use of energy converters. When a direct current is required, rectifier bridges are needed. These can be made using rectifier diodes. The problem of excessive junction temperatures in power diodes, which are used to build rectifier bridges and power converters, was recognized. For this reason, research work was carried out to create a model of a rectifier diode placed on a heat sink and to analyze the heat dissipation from the junction of this diode under forced convection conditions. The results obtained from the simulation work were compared with the results of thermographic temperature measurements. The boundary conditions chosen for the simulation work are presented. A method is also presented that determined the convection coefficient under forced convection conditions. The difference between the simulation results and the results of the thermographic measurements was found to be 0.1 °C, depending on the power dissipated at the junction and the air velocity around the diode.

Funder

the Ministry of Education and Science of Poland

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3