Machine Learning and Game-Theoretic Model for Advanced Wind Energy Management Protocol (AWEMP)

Author:

Khabbouchi Imed1ORCID,Said Dhaou2ORCID,Oukaira Aziz3ORCID,Mellal Idir4ORCID,Khoukhi Lyes5

Affiliation:

1. Thermal and Energy Systems Study Laboratory (LESTE), National Engineering School of Monastir, University of Monastir, Monastir 5000, Tunisia

2. Electrical Engineering and Computer Sciences, University of Sherbrooke, Sherbrooke, QC J1K 2R1, Canada

3. Department of Electrical and Computer Engineering, Universite du Quebec en Outaouais, Gatineau, QC J8X 3X7, Canada

4. Department of Electrical Engineering and Computer Science, University of Toronto, Toronto, ON M5S 3G8, Canada

5. ENSI CAEN, GREYC Laboratory, 14000 Caen, France

Abstract

To meet the target of carbon neutrality by the year 2050 and decrease the dependence on fossil fuels, renewable energy sources (RESs), specifically wind power, and Electric Vehicles (EVs) have to be massively deployed. Nevertheless, the integration of a large amount of wind power, with an intermittent nature, into the grid and the variability of the load on the demand side require an efficient and reliable energy management system (EMS) for operation, scheduling, maintenance and energy trading in the modern power system. This article proposes a new Energy Management Protocol (EMP) based on the combination of Machine Learning (ML) and Game-Theoretic (GT) algorithms to manage the operation of the charging/discharging of EVs from an energy storage system (ESS) via EV supply equipment (EVSE) when the main source of energy is wind power. The ESS can be linked to the grid to overcome downtimes of wind power production. Case study results of wind power forecasting using an ML algorithm and 10 min wind measurements, combined with a GT optimization model, showed good performance in the forecasting and management of power dispatching between EVs to ensure the efficient and accurate operation of the power system.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3