Localization of Coordinated Cyber-Physical Attacks in Power Grids Using Moving Target Defense and Machine Learning

Author:

Yu Jian1ORCID,Li Qiang1,Li Lei1

Affiliation:

1. School of Automation, Nanjing University of Science & Technology, Nanjing 210094, China

Abstract

Coordinated cyber-physical attacks (CCPAs) are dangerously stealthy and have considerable destructive effects against power grids. The problem of stealthy CCPA (SCCPA) localization, specifically identifying disconnected lines in attack, is a nonlinear multi-classification problem. To the best of our knowledge, only one paper has studied the problem; nevertheless, the total number of classifications is not appropriate. In the paper, we propose several methods to solve the problem of SCCPA localization. Firstly, considering the practical constraints and abiding by one of our previous studies, we elaborately determine the total number of classifications and design an approach for generating training and testing datasets. Secondly, we develop two algorithms to solve multiple classifications via the support vector machine (SVM) and random forest (RF), respectively. Similarly, we also present a one-dimensional convolutional neural network (1D-CNN) architecture. Finally, extensive simulations are carried out for IEEE 14-bus, 30-bus, and 118-bus power system, respectively, and we verify the effectiveness of our approaches in solving the problem of SCCPA localization.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3