Estimation of Solar Radiation for Tomato Water Requirement Calculation in Chinese-Style Solar Greenhouses Based on Least Mean Squares Filter

Author:

Zhang Dapeng,Zhang Tieyan,Ji Jianwei,Sun Zhouping,Wang Yonggang,Sun Yitong,Li Qingji

Abstract

The area covered by Chinese-style solar greenhouses (CSGs) has been increasing rapidly. However, only a few pyranometers, which are fundamental for solar radiation sensing, have been installed inside CSGs. The lack of solar radiation sensing will bring negative effects in greenhouse cultivation such as over irrigation or under irrigation, and unnecessary power consumption. We aim to provide accurate and low-cost solar radiation estimation methods that are urgently needed. In this paper, a method of estimation of solar radiation inside CSGs based on a least mean squares (LMS) filter is proposed. The water required for tomato growth was also calculated based on the estimated solar radiation. Then, we compared the accuracy of this method to methods based on knowledge of astronomy and geometry for both solar radiation estimation and tomato water requirement. The results showed that the fitting function of estimation data based on the LMS filter and data collected from sensors inside the greenhouse was y = 0.7634x + 50.58, with the evaluation parameters of R2 = 0.8384, rRMSE = 23.1%, RMSE = 37.6 Wm−2, and MAE = 25.4 Wm−2. The fitting function of the water requirement calculated according to the proposed method and data collected from sensors inside the greenhouse was y = 0.8550x + 99.10 with the evaluation parameters of R2 = 0.9123, rRMSE = 8.8%, RMSE = 40.4 mL plant−1, and MAE = 31.5 mL plant−1. The results also indicate that this method is more effective. Additionally, its accuracy decreases as cloud cover increases. The performance is due to the LMS filter’s low pass characteristic that smooth the fluctuations. Furthermore, the LMS filter can be easily implemented on low cost processors. Therefore, the adoption of the proposed method is useful to improve the solar radiation sensing in CSGs with more accuracy and less expense.

Funder

the National Key Research and Development Program of China

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3