Estimation of daily global solar radiation based on different whitening applications using temperature in Mediterranean type greenhouses

Author:

Karaca CihanORCID

Abstract

The study aimed to estimate the daily global solar radiation (Rs) in Mediterranean-type greenhouses. Five different temperature-based Rs estimation models developed for open-field conditions were calibrated and validated in Mediterranean-type greenhouses in Almeria, Spain and Antalya, Türkiye, between August 26, 2013, and January 1, 2023, and between October 1, 2018, and 1 January 2023, respectively. Whitening applications were categorized according to greenhouse light transmissivity and classified as follows: without whitening or light-whitening, medium-whitening, and severe-whitening. Additionally, the best-performing model were compared with greenhouse plastic light transmissivity method. The estimation performance of the models was evaluated using the statistical indicators of the p-value of the slope, determination coefficient (R2), Nash–Sutcliffe model efficiency coefficient (NSE), root mean square error (RMSE), mean absolute error (MAE), relative error (RE), and Willmott Index (d). Compared with the other models, the Bristow and Campbell model showed a slightly higher performance in all whitening applications. Although the light transmissivity coefficient method performed slightly better than the temperature-based Rs estimation model, there was no statistical difference in the performances of the estimation models. Temperature-based estimation models offer a highly viable alternative for individuals who rely on the light transmittance approach to estimate Rs in greenhouses. This method can prove particularly useful in areas where measuring Rs outside the greenhouse is not possible or where partial time measurements cannot be taken owing to equipment malfunctions. All calibrated models can be used to estimate solar radiation using temperature data from various Mediterranean countries with similar climates and greenhouse cultivation.

Publisher

Firenze University Press

Subject

Atmospheric Science,Agronomy and Crop Science,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3