Automatic Tolerance Analysis of Permanent Magnet Machines with Encapsuled FEM Models Using Digital-Twin-Distiller

Author:

Orosz TamásORCID,Gadó KrisztiánORCID,Katona MihályORCID,Rassõlkin AntonORCID

Abstract

Tolerance analysis is crucial in every manufacturing process, such as electrical machine design, because tight tolerances lead to high manufacturing costs. A FEM-based solution of the tolerance analysis of an electrical machine can easily lead to a computationally expensive problem. Many papers have proposed the design of experiments, surrogate-model-based methodologies, to reduce the computational demand of this problem. However, these papers did not focus on the information loss and the limitations of the applied methodologies. Regardless, the absolute value of the calculated tolerance and the numerical error of the applied numerical methods can be in the same order of magnitude. In this paper, the tolerance and the sensitivity of BLDC machines’ cogging torque are analysed using different methodologies. The results show that the manufacturing tolerances can have a significant effect on the calculated parameters, and that the mean value of the calculated cogging torque increases. The design of the experiment-based methodologies significantly reduced the calculation time, and shows that the encapsulated FEM model can be invoked from an external system-level optimization to examine the design from different aspects.

Funder

Estonian Research Council

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Accuracy of the robust design analysis for the flux barrier modelling of an interior permanent magnet synchronous motor;Journal of Computational and Applied Mathematics;2023-09

2. Performance analysis of a robust design optimization of a solenoid with different sensitivity metrics;Journal of Computational and Applied Mathematics;2023-05

3. Locked-rotor analysis of a Prius 2004 IPMSM motor with Digital-Twin-Distiller;2022 IEEE 20th International Power Electronics and Motion Control Conference (PEMC);2022-09-25

4. The Current Situation of the Rare-Earth Material Usage in the Field of Electromobility;Vehicle and Automotive Engineering 4;2022-09-10

5. Cogging Torque Analysis of Toyota Prius 2004 IPMSM Motor with the Digital-Twin-Distiller;Vehicle and Automotive Engineering 4;2022-09-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3