Robust Design Optimization and Emerging Technologies for Electrical Machines: Challenges and Open Problems

Author:

Orosz TamásORCID,Rassõlkin AntonORCID,Kallaste AntsORCID,Arsénio PedroORCID,Pánek DavidORCID,Kaska JanORCID,Karban PavelORCID

Abstract

The bio-inspired algorithms are novel, modern, and efficient tools for the design of electrical machines. However, from the mathematical point of view, these problems belong to the most general branch of non-linear optimization problems, where these tools cannot guarantee that a global minimum is found. The numerical cost and the accuracy of these algorithms depend on the initialization of their internal parameters, which may themselves be the subject of parameter tuning according to the application. In practice, these optimization problems are even more challenging, because engineers are looking for robust designs, which are not sensitive to the tolerances and the manufacturing uncertainties. These criteria further increase these computationally expensive problems due to the additional evaluations of the goal function. The goal of this paper is to give an overview of the widely used optimization techniques in electrical machinery and to summarize the challenges and open problems in the applications of the robust design optimization and the prospects in the case of the newly emerging technologies.

Funder

Estonian Research Competency Council

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference283 articles.

1. Computational Intelligence in Expensive Optimization Problems;Tenne,2010

2. Bio-inspired computing: Algorithms review, deep analysis, and the scope of applications

3. A review of efficient FE modeling techniques with applications to PM AC machines

4. Multidisciplinary Design Optimization Methods for Electrical Machines and Drive Systems;Lei,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3