A Study on the Retrieval of Temperature and Humidity Profiles Based on FY-3D/HIRAS Infrared Hyperspectral Data

Author:

Zhang ChunmingORCID,Gu Mingjian,Hu Yong,Huang Pengyu,Yang Tianhang,Huang Shuo,Yang Chunlei,Shao Chunyuan

Abstract

Satellite infrared hyperspectral instruments can obtain a wealth of atmospheric spectrum information. In order to obtain high-precision atmospheric temperature and humidity profiles, we used the traditional One-Dimensional Variational (1D-Var) retrieval algorithm, combined with the information capacity-weight function coverage method to select the spectrum channel. In addition, an Artificial Neural Network (ANN) algorithm was introduced to correct the satellite observation data error and compare it with the conventional error correction method. Finally, to perform the temperature and humidity profile retrieval calculation, we used the FY-3D satellite HIRAS (Hyperspectral Infrared Atmospheric Sounder) infrared hyperspectral data and combined the RTTOV (Radiative Transfer for TOVS) radiative transfer model to build an atmospheric temperature and humidity profile retrieval system. We used data on the European region from July to August 2020 to carry out the training and testing of the retrieval system, respectively, and used the balloon-retrieved sounding data of temperature and humidity published by the University of Wyoming as standard truth values to evaluate the retrieval accuracy. Our preliminary research results show that, compared with the retrieval results of conventional deviation correction, the introduction of ANN algorithm error correction can improve the retrieval accuracy of the retrieval system effectively and the RMSE (Root-Mean-Square Error) of the temperature and humidity has a maximum accuracy of improvement of about 0.5 K (The K represents the thermodynamic temperature unit) and 5%, respectively. The temperature and humidity results obtained by the retrieval system were compared with Global Forecast System (GFS) forecast data. The retrieved temperature RMSE was less than 1.5 K on average, which was better than that for the GFS; the humidity RMSE was less than 15% as a whole, and better than the forecast profile between 100 hpa (1 hpa is 100 pa, the pa represents the air pressure unit) and 600 hpa. Compared with AIRS (Atmospheric Infrared Sounder) products, the result of the retrieval system also had a higher accuracy. The main improvement of the temperature was at 200 hpa and 800 hpa, with maximum accuracy improvements of 2 K and 1.5 K, respectively. The RMSE of the humidity retrieved by the system was also better than the AIRS humidity products at most pressure levels, and the error of maximum difference could reach 15%. After combining the two algorithms, the FY-3D/HIRAS infrared hyperspectral retrieval system could obtain higher-precision temperature and humidity profiles, and relevant results could provide a reference for improving the accuracy of business products.

Funder

Chunyuan Shao

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3