Temperature and Relative Humidity Profile Retrieval from Fengyun-3D/VASS in the Arctic Region Using Neural Networks

Author:

Hu Jingjing123,Wu Jie4,Petropoulos George P.5ORCID,Bao Yansong23,Liu Jian6,Lu Qifeng6,Wang Fu6,Zhang Heng7,Liu Hui6ORCID

Affiliation:

1. Wenzhou Air Traffic Management Station, Civil Aviation of China, Wenzhou 325000, China

2. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, CMA Key Laboratory for Aerosol-Cloud-Precipitation, Nanjing University of Information Science & Technology, Nanjing 210044, China

3. School of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing 210044, China

4. Nanjing Yangzi River Channel Management Office, Nanjing 210044, China

5. Department of Geography, Harokopio University of Athens, EI. Venizelou 70, Kallithea, 17671 Athens, Greece

6. National Satellite Meteorological Center, Key Laboratory of Radiometric Calibration and Validation for Environmental Satellites, China Meteorological Administration, Beijing 100081, China

7. Shanghai Institute of Satellite Engineering, Shanghai 201109, China

Abstract

In this study, a new technique is proposed to retrieve temperature and relative humidity profiles under clear sky conditions in the Arctic region based on the artificial neural network (ANN) algorithm using Fengyun-3D (FY-3D) vertical atmospheric sounder suit (VASS: HIRAS, MWTS-II, and MWHS-II) observations. This technology combines infrared (IR) and microwave (MW) observations to improve retrieval accuracy in the middle and low troposphere by reducing the sensitivity of the neural networks (NNs) to cloud coverage. The approach was compared against other methods available in the literature on retrieving profiles only from FY-3D/HIRAS data. Furthermore, its retrieval performance was tested by comparing the NNs’ prediction accuracy versus the corresponding FY-3D/VASS and Aqua/AIRS L2 products. The results showed that: (1) NNs retrieval accuracy is higher during the warm season and over the ocean; (2) the retrieval accuracy of NNs has been significantly improved compared with satellite L2 products; (3) referring to radiosonde observations, the retrieval accuracy of NNs below 600 hPa is effectively improved by adding the information of the MW channel, especially on land where cloud clearing is more difficult. The root mean square error (RMSE) of temperature and relative humidity in the cold season were reduced by 0.3 K and 2%, respectively. The advanced NNs proposed herein offer a more stable retrieval performance compared with NNs built only by FY-3D/HIRAS data. The study results indicated the potential value in time and space domain of the NN algorithm in retrieving temperature and relative humidity profiles of the Arctic region from FY-3D/VASS observations under clear-sky conditions. All in all, this work enhances our knowledge towards improving operational use of FY-3D satellite data in the Arctic region.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Artificial Neural Network Models for the Estimation of Air Temperature Cooling and Warming Patterns Inside Urban Clusters: The Case of Courtyards in Athens, Greece;16th International Conference on Meteorology, Climatology and Atmospheric Physics—COMECAP 2023;2023-08-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3