Feasibility Analyses of Real-Time Detection of Wildlife Using UAV-Derived Thermal and RGB Images

Author:

Lee SeunghyeonORCID,Song Youngkeun,Kil Sung-Ho

Abstract

Wildlife monitoring is carried out for diverse reasons, and monitoring methods have gradually advanced through technological development. Direct field investigations have been replaced by remote monitoring methods, and unmanned aerial vehicles (UAVs) have recently become the most important tool for wildlife monitoring. Many previous studies on detecting wild animals have used RGB images acquired from UAVs, with most of the analyses depending on machine learning–deep learning (ML–DL) methods. These methods provide relatively accurate results, and when thermal sensors are used as a supplement, even more accurate detection results can be obtained through complementation with RGB images. However, because most previous analyses were based on ML–DL methods, a lot of time was required to generate training data and train detection models. This drawback makes ML–DL methods unsuitable for real-time detection in the field. To compensate for the disadvantages of the previous methods, this paper proposes a real-time animal detection method that generates a total of six applicable input images depending on the context and uses them for detection. The proposed method is based on the Sobel edge algorithm, which is simple but can detect edges quickly based on change values. The method can detect animals in a single image without training data. The fastest detection time per image was 0.033 s, and all frames of a thermal video could be analyzed. Furthermore, because of the synchronization of the properties of the thermal and RGB images, the performance of the method was above average in comparison with previous studies. With target images acquired at heights below 100 m, the maximum detection precision and detection recall of the most accurate input image were 0.804 and 0.699, respectively. However, the low resolution of the thermal sensor and its shooting height limitation were hindrances to wildlife detection. The aim of future research will be to develop a detection method that can improve these shortcomings.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference53 articles.

1. Wildlife population monitoring: some practical considerations

2. Analysis of Vertebrate Populations;Caughley,1977

3. Large scale wildlife monitoring studies: statistical methods for design and analysis

4. Camera Traps in Animal Ecology: Methods and Analyses;O’Connell,2010

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3