Utilizing Geographical Distribution Statistical Data to Improve Zero-Shot Species Recognition

Author:

Liu Lei1,Han Boxun1,Chen Feixiang12ORCID,Mou Chao123ORCID,Xu Fu123

Affiliation:

1. School of Information Science and Technology, Beijing Forestry University, Beijing 100083, China

2. Engineering Research Center for Forestry-Oriented Intelligent Information Processing of National Forestry and Grassland Administration, Beijing 100083, China

3. State Key Laboratory of Efficient Production of Forest Resources, Beijing 100083, China

Abstract

Species recognition is a crucial part of understanding the abundance and distribution of various organisms and is important for biodiversity conservation and management. Traditional vision-based deep learning-driven species recognition requires large amounts of well-labeled, high-quality image data, the collection of which is challenging for rare and endangered species. In addition, recognition methods designed based on specific species have poor generalization ability and are difficult to adapt to new species recognition scenarios. To address these issues, zero-shot species recognition based on Contrastive Language–Image Pre-training (CLIP) has become a research hotspot. However, previous studies have primarily utilized visual descriptive information and taxonomic information of species to improve zero-shot recognition performance, and the use of geographic distribution characteristics of species to improve zero-shot recognition performance has not been explored. To fill this gap, we proposed a CLIP-driven zero-shot species recognition method that incorporates knowledge of the geographic distribution of species. First, we designed three prompts based on the species geographic distribution statistical data. Then, the latitude and longitude coordinate information attached to each image in the species dataset was converted into addresses, and they were integrated together to form the geographical distribution knowledge of each species. Finally, species recognition results were derived by calculating the similarity after acquiring features by the trained CLIP image encoder and text encoder. We conducted extensive experiments on multiple species datasets from the iNaturalist 2021 dataset, where the zero-shot recognition accuracies of mammals, mollusks, reptiles, amphibians, birds, and insects were 44.96%, 15.27%, 17.51%, 9.47%, 28.35%, and 7.03%, an improvement of 2.07%, 0.48%, 0.35%, 1.12%, 1.64%, and 0.61%, respectively, as compared to CLIP with default prompt. The experimental results show that the fusion of geographic distribution statistical data can effectively improve the performance of zero-shot species recognition, which provides a new way to utilize species domain knowledge.

Funder

the National Key R&D Program of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3