A Novel Scheme to Allocate the Green Energy Transportation Costs—Application to Carbon Captured and Hydrogen

Author:

Benetti Marcelo Azevedo1ORCID,Iov Florin1ORCID

Affiliation:

1. Department of Energy Technology, Aalborg University, 9220 Aalborg East, Denmark

Abstract

Carbon dioxide (CO2) and hydrogen (H2) are essential energy vectors in the green energy transition. H2 is a fuel produced by electrolysis and is applied in heavy transportation where electrification is not feasible yet. The pollutant substance CO2 is starting to be captured and stored in different European locations. In Denmark, the energy vision aims to use this CO2 to be reacted with H2, producing green methanol. Typically, the production units are not co-located with consumers and thus, the required transportation infrastructure is essential for meeting supply and demand. This work presents a novel scheme to allocate the transportation costs of CO2 and H2 in pipeline networks, which can be applied to any network topology and with any allocation method. During the tariff formation process, coordinated adjustments are made by the novel scheme on the original tariffs produced by the allocation method employed, considering the location of each customer connected to pipeline network. Locational tariffs are provided as result, and the total revenue recovery is guaranteed to the network owner. Considering active customers, the novel scheme will lead to a decrease of distant pipeline flows, thereby contributing to the prevention of bottlenecks in the transportation network. Thus, structural reinforcements can be avoided, reducing the total transportation cost paid by all customers in the long-term.

Funder

React-EU COVID-19

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3