Tree-Species Classification and Individual-Tree-Biomass Model Construction Based on Hyperspectral and LiDAR Data

Author:

Qiao Yifan12ORCID,Zheng Guang1,Du Zihan3,Ma Xiao12,Li Jiarui12,Moskal L. Monika4ORCID

Affiliation:

1. International Institute for Earth System Science, Nanjing University, Nanjing 210023, China

2. Jiangsu Provincial Key Laboratory of Geographic Information Science, Nanjing 210023, China

3. Software and Big Data Department, Handan Polytechnic College, Handan 056001, China

4. Remote Sensing and Geospatial Analysis Laboratory, Precision Forestry Cooperative, School of Environment and Forest Science, University of Washington, Seattle, WA 98195, USA

Abstract

Accurate classification of tree species is essential for forest resource monitoring, management, and conservation. Based on the classification of tree species, the biomass model at the individual-tree scale of each tree species can be accurately estimated, which can improve the estimation efficiency of individual-tree biomass. In this study, we first extracted four categories of indicators: canopy height model, spectral features, vegetation indices, and texture features from airborne-laser-scanning (ALS) data and hyperspectral data. We used these features as inputs to the random forest algorithm and screened out the optimal variable combination for tree-species classification, with an overall accuracy of 84.4% (kappa coefficient = 0.794). Then, we used ALS data to perform tree segmentation in forest plots to extract tree height, crown size, crown projected area, and crown volume. According to multivariate nonlinear fitting, the parameters of the individual-tree structure were introduced into the constant allometric ratio (CAR) biomass model to establish the biomass models of three tree species: Douglas fir, Red alder, and Bigleaf maple. The results showed that the model-fitting effects were improved after introducing the crown parameters. In addition, we also found that better tree segmentation results led to more accurate structural parameters.

Funder

National Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3