Enhancing Tree Species Identification in Forestry and Urban Forests through Light Detection and Ranging Point Cloud Structural Features and Machine Learning

Author:

Rust Steffen1ORCID,Stoinski Bernhard2ORCID

Affiliation:

1. Faculty of Resource Management, University of Applied Sciences and Arts, Büsgenweg 1a, 37077 Göttingen, Germany

2. Private Institute for Dynamic Logic, Herforder Straße 15, 50737 Köln, Germany

Abstract

As remote sensing transforms forest and urban tree management, automating tree species classification is now a major challenge to harness these advances for forestry and urban management. This study investigated the use of structural bark features from terrestrial laser scanner point cloud data for tree species identification. It presents a novel mathematical approach for describing bark characteristics, which have traditionally been used by experts for the visual identification of tree species. These features were used to train four machine learning algorithms (decision trees, random forests, XGBoost, and support vector machines). These methods achieved high classification accuracies between 83% (decision tree) and 96% (XGBoost) with a data set of 85 trees of four species collected near Krakow, Poland. The results suggest that bark features from point cloud data could significantly aid species identification, potentially reducing the amount of training data required by leveraging centuries of botanical knowledge. This computationally efficient approach might allow for real-time species classification.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3