Ecological Risk Assessment and Prediction Based on Scale Optimization—A Case Study of Nanning, a Landscape Garden City in China

Author:

Chen Jianjun12ORCID,Yang Yanping1,Feng Zihao1,Huang Renjie1,Zhou Guoqing12ORCID,You Haotian12,Han Xiaowen12

Affiliation:

1. College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541004, China

2. Guangxi Key Laboratory of Spatial Information and Geomatics, Guilin University of Technology, Guilin 541004, China

Abstract

Analysis and prediction of urban ecological risk are crucial means for resolving the dichotomy between ecological preservation and economic development, thereby enhancing regional ecological security and fostering sustainable development. This study uses Nanning, a Chinese landscape garden city, as an example. Based on spatial granularity and extent perspectives, using 30 m land use data, the optimal scale for an ecological risk assessment (ERA) and prediction is confirmed. This study also explores the patterns of spatial and temporal changes in ecological risk in Nanning on the optimal scale. At the same time, the Patch-generating Land Use Simulation model is used to predict Nanning’s ecological risk in 2036 under two scenarios and to propose ecological conservation recommendations in light of the study results. The study results show that: a spatial granularity of 120 m and a spatial extent of 7 km are the best scales for ERA and prediction in Nanning. Although the spatial distribution of ecological risk levels is obviously different, the overall ecological risk is relatively low, and under the scenario of ecological protection in 2036, the area of high ecological risk in Nanning is small. The results can provide theoretical support for ERA and the prediction of landscape cities and ecological civilization construction.

Funder

the Guangxi Science and Technology Base and Talent Project

the National Natural Science Foundation of China

Guangxi Key Laboratory of Spatial Information and Geomatics

the BaGuiScholars program of the provincial government of Guangxi

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3