Abstract
Land cover (LC) maps are crucial to environmental modeling and define sustainable management and planning policies. The development of a land cover mapping continuous service according to the new EAGLE legend criteria has become of great interest to the public sector. In this work, a tentative approach to map land cover overcoming remote sensing (RS) limitations in the mountains according to the newest EAGLE guidelines was proposed. In order to reach this goal, the methodology has been developed in Aosta Valley, NW of Italy, due to its higher degree of geomorphological complexity. Copernicus Sentinel-1 and 2 data were adopted, exploiting the maximum potentialities and limits of both, and processed in Google Earth Engine and SNAP. Due to SAR geometrical distortions, these data were used only to refine the mapping of urban and water surfaces, while for other classes, composite and timeseries filtered and regularized stack from Sentinel-2 were used. GNSS ground truth data were adopted, with training and validation sets. Results showed that K-Nearest-Neighbor and Minimum Distance classification permit maximizing the accuracy and reducing errors. Therefore, a mixed hierarchical approach seems to be the best solution to create LC in mountain areas and strengthen local environmental modeling concerning land cover mapping.
Subject
General Earth and Planetary Sciences
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献